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Abstract 
This project will focus on the estimation of unmeasured inputs to a structure, given a 

numerical model of the structure and the structure’s response.  While the estimation of 

inputs has not received as much attention historically as state estimation, there are many 

applications where an improved understanding of the unmeasurable input to a structure is 

vital (e.g., validating load models for large structures such as buildings and ships).  To 

accomplish this goal of input estimation, project participants will conduct a literature 

review on input estimation, implement and compare at least two estimation techniques 

(extended Kalman Filter and adjoint-based optimization), and validate their results on 

two mechanical test structures. 

Project Description and Approach 

The focus of the project is on the estimation of unmeasured inputs to a structure, given a 

numerical model of the structure and the structure’s response.  One approach to solving 

this problem would be guess an input, run a numerical simulation of the structuring using 

this input, and obtain an output, which could then be compared with the measured output.  

This process could be repeated until a satisfactory input is found.  The advantage to this 

approach is its simplicity.  The disadvantage is that it would likely take hundreds of 

thousands or even millions of simulations to find such an input, even for a simple 

structure.  Fortunately there are better approaches. 

 

The first approach is an extended Kalman filter [1], which allows one to estimate 

unmeasurable states in a dynamical system given limited observations.  Without too 

much difficulty, the input could be treated as one of the states to be estimated.  A 

potential disadvantage to this approach, which will have to be investigated by the project 

team, is that the confidence in the “early time” portion of the estimated input will be 

lower than the “late time” portion. 

 

The second approach is known as adjoint-based optimization.  With this technique, a 

simple cost function (based on the error between the predicted outputs and the measured 

outputs) is constructed, and the goal is to find an input which minimizes it.  To 

accomplish this minimization, a fairly straight forward gradient-descent process will be 

followed. While this sounds like the above mentioned simplistic approach, the 

computational burden is avoided by efficiently being able to calculate the gradient.  As is 

shown in very brief writeup in Appendix A, the gradient can be calculated with 2 

simulations, regardless of how long the input is or how complicated the structure is 

(compare this to a finite difference approach for estimated the gradient which requires as 

many simulations as there are points in the input time history!). 

 

While both approaches will be implemented in Matlab or Python and tested on simulated 

structures, it is important to conduct real-world validation.  Thus, both techniques will be 

evaluated on two test structures.  The first is nonlinear cantilever beam, shown in Figure 



1, where the nonlinearity is introduced with magnets placed near the free end of the 

beam.  The input is supplied via a shaker, and the response may be measured with 

accelerometers and/or a laser displacement sensor.  The second test structure is a three 

story structure supported on roller bearings and excited by a shaker, as shown in Figure 2.  

Response is measured with accelerometers.  For both sets of validation tests, the goal will 

be to see how well each of the two approaches reproduces the input signal. 

 

Figure 1.  Cantilever beam test structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Three-story frame structure and shaker 
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Project Schedule 
 

 Week 1:  Complete safety training 

 Week 2:  Conduct literature review 

 Week 3:  Implement extended Kalman Filter for simulations 

 Week 4:  Implement adjoint-based optimization for simulations 

 Week 5:  Evaluate both techniques on cantilever beam 

 Week 6:  Evaluate both techniques on 3-story structure 

 Week 7:  Repeat any necessary experiments 

 Week 8:  Document results in the form of a conference paper 

 Week 9:  Present results 
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Appendix A:  Very Brief Summary of the Adjoint Method 
for Calculating a Gradient 
 

Mathematically, the details of the adjoint-optimization approach are as follows.  The 

nonlinear finite element model can be represented as 

tuxfx ,,          (1) 

where x is the vector of system states (usually positions and velocities of all the nodes in 

the mesh of the structure), u is a vector of inputs at nodes on the structure and t is time.  

The measured outputs, y, can generally be represented as  

Cxy  

where, C is some matrix.  Stated another way, the outputs are some linear combination of 

the states of the system.  The model’s error is then defined to be 

myye  

The goal of the optimization is to select u such that e is minimized.  Or, more precisely, 

we want to minimize the cost function 
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myCxe , and after some manipulation, this cost function can be rewritten as 
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where Q=C
T
C.  If the input u is perturbed by u , the perturbed state trajectory is given by 

the tangent linear equation 
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where tA
dt

d
  and A(t) and B(t) are obtained by linearizing Equation 1 about x and 

u.  The resulting perturbation to J is given by  
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http://en.wikipedia.org/wiki/Kalman_filter#Extended_Kalman_filter


The goal of what follows is simply to re-express J’ as a functional linear in u’.  To that 

end, we integrate Equation (3) against a test function, r. 
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using integration by parts, we can rewrite the above equation as 
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d* .  This is true for any test function, r.  If we select r such that  
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then Equation 4 can be rewritten as 
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Equation 5 is referred to as the adjoint equation. Thus, we have expressed J’ as a 

functional linear in u’. The gradient of with respect to u is then simply 
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Therefore, givens some initial guess at u, Equation 1 is solved for x.  This x is then used 

in conjunction with the measured data, ym to solve Equation 5 in reverse-time, since r(T) 

is known.  From r, the gradient of the cost function with respect to the input may be 

calculated, and used to update u (using any number of standard gradient descent based 

optimization techniques).  Note that solving Equation 5 requires what is known as an 

adjoint version of the simulation code, which can calculate the linearized A(t) and B(t), as 

functions of x and u. 

 


